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Abstract. Recent advances in diffusion MRI have allowed for improved
understanding of the white matter connectivity. Models like the Diffusion
Tensor, diffusion Orientation Distribution Function (ODF) with a mono-
exponential signal decay have shown good fiber reconstruction accura-
cies. More complex radial signal decay models, like the bi-exponential
model, have been shown to better approximate the in-vivo diffusion sig-
nal. In this paper, we generalize the Constant Solid Angle ODF (CSA-
ODF) algorithm to handle any g-space sampling and exploit the bi-
exponential model. Simulation results to optimize the reconstruction and
acquisition parameters are described. Finally, the algorithm is validated
on human brain data. Our generalized CSA-ODF model performs opti-
mally with 200 ¢-space data points distributed over three shells acquired
at b = 1000,2000s/mm? and in the range [3000,6000]s/mm? for the
third shell. Crossings up to about 30 degrees can be recovered, and fiber
orientations can be detected with a precision of about 1 degree.

1 Introduction

In the past decade, there has been significant interest in diffusion Weighted Mag-
netic Resonance (MR) Imaging for applications related to brain connectivity
mapping [1,2]. This has been facilitated by faster MR acquisitions and improved
signal modeling. The fiber orientation can be approximated using models like
Diffusion Tensor Imaging (DTI) [3], Ball and Stick model [4], Diffusion Ori-
entation Transform (DOT) [5], diffusion ODF [6] based models, Constrained
Spherical Deconvolution (CSD) [7] and compartment-based models as in Pana-
giotaki et al. [8]. Aganj et al [9] introduced a correction of the original ODF
model [6], called the CSA-ODF model, which implicitly sharpens the peaks, and
is mathematically accurate. In this case, the fiber orientations are estimated
using maxima extraction [10,11] methods.



The utility of acquiring diffusion-weighted data over multiple g-space shells
has been discussed previously by many groups [9, 12-16]. Diffusion Spectrum
Imaging (DSI) [17] achieves a similar purpose by sampling g-space on a uniform
3D Cartesian grid. Current g-ball methods typically rely on sampling diffusion
signals on a single shell in g-space, based on which a radial decay model can be
estimated. This places a restriction on the types of signal decay models that can
be used. Acquiring multiple signal values along a single gradient direction allows
estimating more complex decay models like the bi-exponential model, which is
known to be more accurate [18], but open new computational challenges.

Contributions: We explore an approach where the acquisition is done over
a finite set of b-values in staggered gradient directions, so as to allow a better
angular resolution, along with providing radial information of the diffusion signal
decay. Given a finite number of measurements on a particular shell, we investigate
how to accurately interpolate such spherical data to be able to retrieve samples in
any orientation. Computationally efficient methods in estimating the ODF have
been explored in detail in [19]. An intelligent choice of Spherical Harmonic (SH)
bases allows for a linear and regularized algorithm. We further refine previous
investigations on the optimal choice of regularization for SH fitting.

The CSA-ODF model [9] has been shown to perform better than “artifi-
cially” sharpened models, and this work focuses on extending this method to
support generic sampling of g-space. We study the optimal set of b-values for
the multi-shell acquisition for this new generalized CSA-ODF algorithm. We also
investigate the minimum number of gradient directions to use in order to min-
imize distortions on ODF reconstruction and uncertainty on fiber estimation.
We finally investigate the minimum achievable separating angle between fibers
and the uncertainty on the localization of fiber orientation with the proposed
acquisition and reconstruction protocol.

The rest of the paper is organized as follows. A short overview of the CSA-
ODF model is presented in Section 2. We then describe the extension of this
algorithm to generic ¢-space sampling. Section 3 includes extensive simulation
studies and results. This is followed by results to validate the algorithm on human
brain data.

2 Methods
2.1 g-ball Estimation

The ¢-ball method [6] estimates fiber orientations from high angular resolution
diffusion imaging (HARDI) data. ¢-ball imaging is a natural choice for fiber
orientation estimates, as the data is acquired on a spherical shell with different
orientations rather than on a grid in g-space. Using more complex radial decay
models can provide a better understanding of the diffusion process and hence
the axonal configuration of the white matter.

A modified SH basis was used in [19-21] for representing spherical distri-
butions. This leads to an analytic computation of the Funk Radon Transform
(FRT) where the ODF is obtained as a linear combination of SH bases. The
CSA-ODF model [9] corrects a mathematical inaccuracy, due to which the ODF



was originally measured over a cylindrical profile rather than within the intended
solid angle {2. The SH coefficients usually denoted by Y, (I is the order, m is
the phase factor), are the basis functions for complex functions on the sphere. It
is assumed that ODFs are antipodally symmetric, and consequently, even val-
ues of | are used to decompose the data. Increasing the order of approximation
reduces the width of the ODF lobes and hence increases the angular resolution
as well as, to some extent, sensitivity to noise. With this kind of basis functions,
the normalized signal S(6;,¢;), for K points ‘4 = 1,2,..K’ on the g¢-shell is
decomposed as

S(0:,¢i) = L1650, ) (1)
where j indexes the even ordered SH bases, for ‘I = 0,2,4,...0,,4." and ‘m =
—1,...0,...l". ¢j are the N SH coeflicients. These coefficients completely determine
the shape of the ODF.

For discrete samples on a single shell, this can be written as an overdeter-
mined linear system, where the number of gradient directions along which the
signal is acquired is higher than N. The SH coefficients are usually estimated us-
ing a least-squares minimization procedure, but this is known to be sensitive to
noise, especially preponderant in high b-value datasets with lower SNR. Several
regularization schemes have therefore been suggested, especially Tikhonov [20]
and Laplace Beltrami regularizations [19], which smooth the reconstruction, at
the expense of losing sharp features of the fiber distribution. This trade-off is
essential in the interpolation of the signal values for multi-shell reconstruction,
and a detailed analysis is presented in Section 3.2.

2.2 Multishell structure

Diffusion MR signal acquisitions are characterized by two important parameters:
the b-value(s) (typically specified in s/mm?) and the gradient table. For typical
diffusion levels in the human brain (0.0021mm?/s) [21], it has been observed
that a single b-value in the order of 2200 — 2800s/mm? is optimal to reconstruct
crossing fibers [21]. The gradient table selects points on the shell and encodes
the spatial coordinates of points where the signal is acquired.

This type of sampling technique can be extended to multiple concentric shells
of different b-values [22], so that the diffusion signal is measured at different lev-
els of decay. Keeping the orientation fixed, as the b-value is varied, signal samples
can be measured, which allows a straightforward estimation of higher order dif-
fusion models along each orientation independently. We refer to this acquisition
scheme as the aligned multi-shell scheme. It is also possible to distribute points
uniformly (and incrementally) over several shells in order to maximize angu-
lar coverage, as demonstrated in [23]. In this setting, a wider range of orienta-
tions is covered. We refer to this acquisition scheme as the staggered multi-shell
scheme [23].

2.3 Generalized CSA-ODF Algorithm

We generalize the previous work [9] on CSA-ODF by i) optimally fitting data
on each shell using SH series and adaptive regularization, and ii) handling any



combination of b-values to fit a bi-exponential model (when at least three shells
are present). We limit the discussion in this section to three shells, but this ap-
proach can be used over any number of shells, as illustrated in the experimental
section. Once the signal S, sampled in K gradient directions has been fitted to
a SH series of a given order (4, 6, or 8 in general), yielding N coefficients ¢;,
it is straightforward to estimate the signal value at a new orientation Z; using
Equation (1). We investigate in Section 3.2 optimal regularization choices at var-
ious SNR levels, SH orders and for various fiber configuration using Generalized
Cross-Validation (GCV) [24].

With signal values available in any direction, it becomes possible to estimate
the three parameters of a bi-exponential model. Aganj et al. [9] derive an analytic
formula to estimate these parameters, under the constraint that the shells must
have b-values in arithmetic progression. We generalize this to any set of b-values,
using a trust region based optimization scheme (as implemented in MATLAB).
The signal decay along a given direction is thus fitted to a bi-exponential model
as follows: Along Z;, the signal is estimated as

—5Mp —6Pp
J J

(2)

where b is the b-value, and a;, is the volume fraction of the first decay compo-

Xz, (b) = as,e + (1 —ag,)e

nent. (52) and 5;?) are the decay rates for the corresponding compartment along
%; usually referred to as “slow” and “fast” compartment [18]. The ODF can now
be calculated as

: 1 1 (1) )
ODF(%;) = y MFRT{vg(aijzn(52j )+ (1—az)n(;)}  (3)
The SH coefficients ¢; of the double-logarithm of the signal are computed such
that

oz, In(00) + (1 — 0z )In(8)) = TN, ¢;Yi(6;, ;) (4)

J
The SH coefficients copr of the ODF are then obtained through a linear trans-
formation of the ¢; as described in [9]. We describe the method in detail in
Algorithm 1. K signal acquisitions (S) are supposed available along K gradient
directions encoded by bvecs. The it" element of shelllD encodes the b-value at
which the i*" acquisition in S was made. T is the matrix containing values taken
by each considered spherical harmonic along each direction in bvecs. Sinterp is
the interpolated signal on each g-shell. o and §(12) are the parameters of the
bi-exponential model. X is the estimated bi-exponential decay for each direction,
and copr is the SH coefficients of the ODF thus estimated. In order to illustrate
the performance of the bi-exponential model fit, we provide in Fig. 1 the signal
decay profile as a function of b-values along various directions for a single- and
two-fiber configurations. The cylinder-dot-zeppelin compartment model [8] was
used to generate data at SNR 15, along 300 directions. Along the fiber direc-
tion of the single fiber model, when averaged over the closest 30 datapoints, we
observe a fast diffusivity of 0.0017mm?/s with a volume fraction of 0.525 and
a slow diffusivity of 0.0005mm?/s with a volume fraction of 0.474. Across the



Algorithm 1 : Generalized CSA-ODF

Input: Sk 1), bvecsk 3y, b-value(z 1y (for 3 shells), ShellID k1.
Output: CODF
fori=1to 3 do
Si < S where ShelllD == b-value(i)
C; = (TZTT1 + AlL)_lTZTSl
Sinterp; — T * ¢; {where J indexes an arbitrary gradient table.}
end for
for j = 1 to number of directions in J do
X (o, 6;”, 67(.2)) < bi-expfit(Sinterp) {bi-expfit as defined in Equation (2)}
end for
copr — ODF((TTT;)~'TT X ;) {the ODF function as defined in Equation (3)}.
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Fig. 1: Bi-exponential decay for the single- and two-fiber configurations.

fiber direction, when averaged over the closest 30 datapoints, we observe a fast
diffusivity of 0.0029mm? /s with a volume fraction of 0.296 and a slow diffusivity
of 0.0002mm?/s with a volume fraction of 0.68. These values are of the same
order as the parameters we use to simulate the data. Moreover, we verify [8]
that diffusion along the cylinder is bi-exponential, while largely monoexponen-
tial across the cylinder. Similar results were found in the two-fiber case along
both cylinders (bi-exponential) and in the orthogonal direction.

3 Protocol Optimization

3.1 Simulation setup

We rely on realistic diffusion models available in Camino [25]. We use three
compartments for single-fiber configurations and five compartments for two-
fiber configurations, with volume fractions 0.6 for the intra-axonal, 0.1 for the
extra-axonal, and 0.3 for the isotropic compartment, as described in [8]. This
is scaled appropriately for the two-fiber case. The intra-axonal compartment is
modeled as a cylinder of radius 0.004mm with a gaussian phase distribution
(GPD) and diffusivity 0.0017mm?/s. The extra-axonal compartment is modeled



as a zeppelin with diffusivity 0.0017mm?/s along the fiber, and 0.0002mm?/s
across it. Finally, the isotropic component is modeled as a dot. Eleven b-values:
[1000, 1500, 2000, ...6000]s/mm? are calculated using the following pulse sequence
parameters G = 0.05 T/m, TE = 0.1s, § = 0.02s and varying A. In all experi-
ments, we choose a maximum number of 300 gradient directions divided across
three shells. For ground truth signal and associated ODF, we choose 300 di-
rections on eleven shells (from the 11 b-values), at SNR 40. As a measure of
similarity of ODFs, the L? norm of the difference in the SH coefficients is used.

3.2 Optimal regularization analysis:

The first step of the generalized CSA-ODF algorithm creates a continuous rep-
resentation of the diffusion signal on each shell. To that end, we fit SH series of
order 4, 6 or 8. The regularized least squares solution for the inverse problem of
estimating the SH coeflicients is given by:

c=TT"T+A)7'TTS (5)

where ¢ is the vector of SH coefficients, S is the normalized signal, I is the
identity matrix, and A is the regularization parameter.

Methods to estimate the optimal value for A have been discussed in [24,
26,27]. The need for regularization arises from the small singular values of T
Small variations in S leads to high variation in the SH coefficients c. Regularized
inversion is parameterized by A which ideally is between the highest and lowest
singular value of T. Laplace-Beltrami regularization has been extensively used
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Fig. 2: Surface plot of A for order 4 (left), and order 6 (right) for the two-fiber config-
uration as a function of SNR and b-value.

in the context of ODF reconstruction mostly because of the simple form of
the Laplace-Beltrami operator for functions described by SH series [19]. It is
controlled by replacing the identity matrix in Equation (5) by L (the square of
the Laplace Beltrami matrix) whose diagonal elements are (I + 1)*12, where [ is
the order of the SH at the corresponding column.

A needs to be adjusted as a function of the acquisition and reconstruction
parameters. We carried out an exhaustive investigation of the optimal choice of
regularization for eleven b-values in the range [1000, 1500, ...6000]s/mm?, five
SNR=5, 15,25, 35, and 45, three SH reconstruction orders of 4, 6 and 8, and
finally, three fiber configurations with 1, 2 or 3 orientations. The optimal A value
is calculated using the GCV method [24], rather than the L-curve method, since
the L-curve method assumes the discrete Piccard conditions [26], which is not



Table 1: Optimal X values for three-fiber, order 6 reconstruction (b-value in s/mm?).

b-value | SNR:5 [ SNR:15 [ SNR:25 | SNR:35 [ SNR:45 |
1000 0.083302 0.014496 | 0.011214 [ 0.006020 0.004279
1500 0.038631 0.008837 | 0.004006 0.001763 0.002086
2000 0.047775 0.006534 | 0.002520 [ 0.001391 0.001055
2500 0.017271 0.004824 | 0.001556 0.000823 0.000573
3000 0.021266 0.002089 | 0.001388 0.000670 0.000429
3500 0.026 0.002072 0.001057 | 0.000470 | 0.000318
4000 0.027045 0.001593 | 0.0006 0.00037 0.000319
4500 0.01063 0.002516 | 0.000865 0.000676 0.000243
5000 0.024093 0.001576 | 0.000795 0.000448 0.000453
5500 0.022867 | 0.001241 0.000788 0.000383 0.000391
6000 0.020809 0.001715 0.001317 | 0.000419 0.000353

true for Equation (5). Fig. 2 shows surface plots of A, for varying b-values and
SNRs. Two SH orders are represented in the case of a two-fiber configuration.
Each data point is obtained as the average optimal A for 100 repetitions with
randomly selected angles between fibers. Table 1 provides numerical values in
the three-fiber case. The trends show that lesser regularization is necessary for
higher SNRs, and that the optimal A can deviate quite significantly from the
commonly used 0.006 value [19], especially at SNR=25 and b-values greater than
1500s/mm?. Interestingly, at all orders, regularization slightly decreases with
increased b-value for a given SNR. This behavior is consistent across the three
investigated configurations. Eight other tables similar to Table 1 are available,
therefore making it possible to adjust the choice of A to specific experimental
conditions, as done in the rest of the paper. We note that SH parameterization
of the ODF (Equation (3)) is done without regularization.

3.3 Optimal b-value analysis:

We study the effects of varying the sets of b-values to accurately estimate the
ODF. We restrict ourselves to fourteen representative sets of three b-values. We
will demonstrate in the following that adding a fourth shell only improve perfor-
mance marginally. We restrict the range up to a b-value of 6000s/mm? as most
of the bi-exponential nature of the diffusion signal is concentrated in the range
of 1500 — 4000s/mm?. We fix the total number of gradient directions to 300
(distributed as 21, 86, 193 over the shells) [23]. All SNRs, single- and two-fiber
configurations and SH orders 4 and 6 are tested. The corresponding optimal A is
always chosen from Section 3.2. In each case, as for all experiments from now on,
20 repetitions are performed and the mean result reported. Results of this sim-
ulation are shown in Fig. 3. The set [1000,2000,6000]s/mm? shows lower error
at SNR=15, 25 or 40 for an order 4 reconstruction and one-fiber configuration.
Similar trends are observed at SNR 5 although, as expected, with much higher
reconstruction error levels. Results are consistent with Fig. 1, where the signal
decay exhibits the highest deviation from the mono-exponential behavior in the
vicinity of b-value 2000s/mm?. b-value sets that skip this critical region show
errors that are considerably larger as they do not capture the bi-exponential
nature of the diffusion signal. b-value sets [1000, 2000, 3000/4000/5000]s/mm?



exhibit similar performance but we focus on the set [1000,2000,6000]s/mm?
to demonstrate the performance of the bi-exponential fitting algorithm in the
most non-uniform sampling case. b-value [1000, 2000, 6000] s/mm? show supe-
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Fig. 3: Reconstruction error for order 6, single-fiber configuration.
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Fig. 4: Average reconstruction error for four combinations of SH order and fibers.

Table 2: Reconstruction error for varying order, SNR and fiber configurations for two
representative b-value sets.

Order: 4 Order: 6
one-fiber two-fiber one-fiber two-fiber
SNR: 5 b=1,2,6 0.03383 0.02842 0.04709 0.03997
b=1,4,6 0.03808 0.02938 0.05965 0.04820
SNR: 25 b=1,2,6 0.00138 0.00111 0.00498 0.00868
b=1,4,6 0.00791 0.00577 0.03063 0.02152

rior reconstruction in all our tests as seen in Fig. 4. Clearly, b-value sets in-
cluding 1000 and 2000s/mm? and with 3000, 4000, 5000 or 6000s/mm? as third
shell outperform other combinations. We will consider [1000,3000,5000] and
[1000, 4000, 6000]s/mm? respectively as “average” and “poor” candidates for
subsequent comparisons. For completeness, Table 2 demonstrates, for “good”
and “poor” choices of b-value, the relative insensitivity of the reconstruction
to fiber configurations (a very desirable property for brain data) as well as the
difference in error (one order of magnitude) between SNR 5 and 25.



3.4 Optimal number of gradient directions:

Reconstruction error is studied for a reduced number of total points, with all
the other parameters remaining unchanged. This provides a quantitative mea-
sure of the loss in reconstruction accuracy, in comparison with the ground truth.
Fig. 5 (for a two-fiber configuration at SNR 25) shows how the error decreases
as the number of sample points increases. It is seen that the curves are nearly
flat after around 200 directions. Moreover, b-value sets previously identified as
“good”, “average” and “poor” preserve their relative performance with increas-
ing number of directions. Additionally, we compare the aligned sampling scheme
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Fig.5: Reconstruction error as a function of the number of directions acquired for
different cases of b-value for two-fiber configuration at SNR 25, order 6 reconstruction.

with the staggered scheme for the same total number of data points over all
shells, e.g: 300 staggered points divided as 21,86 and 193 are compared with 300
aligned points divided as 100, 100 and 100. Fig. 5 shows the reconstruction errors
in both cases. The interpolation step in the staggered case does not introduce
significant distortions. Moreover, this approach clearly provides a better angular
resolution and improves ODF reconstruction. Fig. 5 also shows that a four-shell
[1000, 2000, 3000, 6000]s/mm? acquisition does not provide an appreciable in-
crease in accuracy. It therefore illustrates that three points are likely sufficient
to estimate the three parameters a, §(!) and §(2).

3.5 Angular resolution and error

We investigate the minimum achievable separating angle between fiber orien-
tations using the staggered acquisition scheme with 200 directions, b-values of
[1000, 2000, 6000]s/mm?, SH order 8 and SNR 40. It has been demonstrated that
angles around 30 degrees can be recovered when using order 8 SH series [20].
Fig. 6 shows the reconstruction in steps of 10 degrees from orthogonal to a
single-fiber configuration, with an order 8 reconstruction. The * indicates the
minimum angle between which we resolve crossings, which precisely happens be-
tween 35 and 30 degrees. Table 3 summarizes the angular error achieved with
the same sampling scheme but varying SH orders and SNR for an orthogonal
two-fiber configuration. For each case, 100 repetitions were performed and the
mean + standard deviation of the angular error between the estimated ODF
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Fig.6: Angular resolution in the two-fiber case, varying from orthogonal-fiber to a
single-fiber configuration.
Table 3: Angular error performance (degrees) for an orthogonal-fiber configuration.

mean £std [ SNR:5 | SNR:15 [ SNR:25 [ SNR:40 |

Order: 4 5.3759 £ 2.0902 |1.5826 £ 0.6079 |1.0886 £ 0.4610 [0.7299 £ 0.2736
Order: 6 5.4046 £+ 2.1040 |1.5992 £ 0.6564 |1.1093 £ 0.4642 |0.7463 £+ 0.2725
Order: 8 5.4309 £+ 2.1006 |1.6184 £ 0.6215 |1.0920 £ 0.4685 [0.7356 £ 0.2769

maxima [10] and the true orientation are reported. Even at low SNR, the maxi-
mum error is around 5 degrees. For realistic SNR, an average error of 1 degree is
achieved which outperforms many existing ODF reconstruction technique [7,28].

4 Application to human brain data

Finally, our generalized CSA-ODF algorithm was applied to human brain data
from a healthy volunteer [29], acquired on a 3T Siemens scanner with the fol-
lowing parameters: Voxel size 1.5mm isotropic, TR/TE=3200/77ms, 133 aligned
DWI at b= [1000, 2000, 3000]s/mm? and 10 b0. ODF reconstructions are pre-
sented in Fig. 7. Fiber crossings in the centrum semiovale and various other com-
plex white matter areas are successfully recovered. Moreover, we down-sampled
the data by half (from 133 to 67 directions) and verified (Fig. 7) that the ODF
reconstruction still performed very well. This is expected from our simulations,
although a staggered scheme was not available for this dataset (in which case
we would expect even better results).

5 Conclusion

We have generalized the CSA-ODF model to account for a flexible acquisition
scheme, and provided an analysis of the optimal parameters for the reconstruc-
tion of the ODF. It is observed that specific sets of b-values (e.g. [1000, 2000, 6000]
s/mm?) perform clearly better, which can be explained by looking deeper into
the bi-exponential nature of the diffusion signal decay. For this particular recon-
struction algorithm, three-shell acquisitions perform nearly as well as four-shell
acquisitions, and around 200 gradient directions are sufficient for good angular
resolution as well as accuracy.
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